Continuous Frames, Function Spaces, and the Discretization Problem
نویسندگان
چکیده
A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous superpositions. Associated to a given continuous frame we construct certain Banach spaces. Many classical function spaces can be identified as such spaces. We provide a general method to derive Banach frames and atomic decompositions for these Banach spaces by sampling the continuous frame. This is done by generalizing the coorbit space theory developed by Feichtinger and Gröchenig. As an important tool the concept of localization of frames is extended to continuous frames. As a byproduct we give a partial answer to the question raised by Ali, Antoine and Gazeau whether any continuous frame admits a corresponding discrete realization generated by sampling. AMS subject classification: 42C15, 42C40, 46B25, 46B45, 46H99, 94A20
منابع مشابه
Continuous $k$-Fusion Frames in Hilbert Spaces
The study of the c$k$-fusions frames shows that the emphasis on the measure spaces introduces a new idea, although some similar properties with the discrete case are raised. Moreover, due to the nature of measure spaces, we have to use new techniques for new results. Especially, the topic of the dual of frames which is important for frame applications, have been specified completely for the c...
متن کاملMultipliers of continuous $G$-frames in Hilbert spaces
In this paper we introduce continuous $g$-Bessel multipliers in Hilbert spaces and investigate some of their properties. We provide some conditions under which a continuous $g$-Bessel multiplier is a compact operator. Also, we show the continuous dependency of continuous $g$-Bessel multipliers on their parameters.
متن کاملWavelet Frames on Groups and Hypergroups via Discretization of Calderón Formulas
Continuous wavelets are often studied in the general framework of representation theory of square-integrable representations, or by using convolution relations and Fourier transforms. We consider the well-known problem whether these continuous wavelets can be discretized to yield wavelet frames. In this paper we us Calderón-Zygmund singular integral operators and atomic decompositions on spaces...
متن کاملSome Properties of Continuous $K$-frames in Hilbert Spaces
The theory of continuous frames in Hilbert spaces is extended, by using the concepts of measure spaces, in order to get the results of a new application of operator theory. The $K$-frames were introduced by G$breve{mbox{a}}$vruta (2012) for Hilbert spaces to study atomic systems with respect to a bounded linear operator. Due to the structure of $K$-frames, there are many differences between...
متن کاملContinuous $ k $-Frames and their Dual in Hilbert Spaces
The notion of $k$-frames was recently introduced by Gu avruc ta in Hilbert spaces to study atomic systems with respect to a bounded linear operator. A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous super positions. In this manuscript, we construct a continuous $k$-frame, so called c$k$-frame along with an atomic system ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005